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1. Introduction
The AWE Core™ is an embedded, dynamically-configured audio-processing engine.  This 
document describes the theory of operation and how to integrate this software-engine into a 
products’ embedded software. The intended audience is embedded software engineers familiar 
with real-time embedded-audio systems.

2. Theory of Operation

2.1. Data Interfaces

The AWE Core™ is a library that’s integrated into an embedded application. It is context-
agnostic, so it can be used with an embedded RTOS or a simple priority-based (i.e. “bare metal” /
“super loop”) scheduling scheme.  In either context, the processor’s software interacts with the 
AWE Core by exchanging three types of data; Audio, Tuning, and Control. 

Figure 1. The three data interfaces to the AWE Core

Audio data is processed in blocks of 32 samples, 64 samples, or some other fixed size. The Audio
Driver, part of the hardware-specific firmware, typically exchanges this data with the rest of the 
system using DMA from a peripheral or shared-memory buffers.

Tuning data is what dynamically configures the signal-processing, including the topology of the 
modules and the tuning parameters for each, such as filter coefficients or channel gain. This data 
is in the form of commands, typically issued by Audio Weaver Designer™ (or 3rd party tools / 
scripts).  The Audio Weaver Server manages the tuning interface on the PC side and supports the
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following transport mechanisms:

 USB
 RS-232
 SPI
 Ethernet

The Tuning Driver, developed by the integrator, may control a peripheral, such as a UART or 
USB port, or it may receive tuning commands via sockets, shared memory, or some other IPC 
mechanism. The Tuning Driver exchanges commands and replies between the AWE Core using 
one of the tuning transports listed above.

Control data typically represents HMI (human-machine interface) settings, such as volume, 
balance, or system-state, such as battery-level. Being a bidirectional interface, data calculated in 
the AWE Core (e.g. RMS level, event-detection flags, or a direction-of-arrival estimate) may also
be retrieved from the control interface.

2.2. Dynamic Instantiation

The AWE Core is a data-driven engine. Immediately after booting, it is inert with no pre-defined 
signal-processing path.  Instead, the signal-processing, which we refer to as a ‘Layout’, is 
constructed at runtime using a set of “tuning” commands. Commands add modules to the active 
layout, connect the wires between modules, write and read parameters, and start/stop audio 
processing; a signal processing Layout is completely defined by a set of tuning commands. 
We refer to this process as dynamic instantiation.

…
bind_wire,wire1,Input
bind_wire,wire2,Output
create_module,SYS_toFloat,ModuleFract32ToFloat,1,1,0,wire1,wire3
create_module,DCRemoval,ModuleButterworthFilter,1,1,0,wire3,wire4,1,1,10.0
write_float_array,DCRemoval.filt.coeffs[0],0.999345958,-0.999345958,0.0,-0.998691857,0.0
create_module,SourceEQ,ModuleSecondOrderFilterSmoothedCascade,1,1,0,wire4,wire4,2,10.0,1
write_float_array,SourceEQ.freq[0],250.0,250.0
…

Figure 2. Example commands that dynamically create a signal processing Layout at runtime

During product-development, tuning commands are automatically generated by Audio Weaver 
Designer™.  (Matlab, 3rd party tools, or scripts [Python, etc] may also generate these tuning 
commands.

For a product to run stand-alone, the complete set of commands that defines a Layout (both in 
topology and tuning) is exported by AWE Designer as an “Audio Weaver Binary” (.AWB) file. 
This AWB data is then stored in a products’ non-volatile memory and loaded (i.e. executed) 
during post-boot init. 
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Note: To facilitate dynamic instantiation, the AWE Core has its own memory manager, with 
three dedicated memory heaps:  Fast, FastB, and Slow.  As described in Section 6.1, the system 
developer is expected to place these three heaps in appropriate memory.

2.3. Tuning Model

A signal-processing Layout is instantiated in the AWE core through a set of Tuning commands. 
Fom the perspective of the integrator and system designer, there are two scenarios to understand 
- based on the origin of the tuning commands.

First, while a new product is being developed, DSP Engineers, Acoustic Engineers, and System 
Engineers will use PC-based tools like AWE Designer to create and refine the signal processing 
Layout. During this phase, commands are sent to the AWE Core from the PC in realtime.

Later, when developers are done tweaking and tuning a product’s signal-processing Layout, it 
must be stored in a product’s NVRAM so the product can operate standalone. The method of 
storing and loading a Layout from NVRAM will vary from product to product and is an 
engineering exercise for the integrator (though Reference Integrations of various forms are 
available for free from DSP Concepts).

Design-Time Operation

When using AWE Designer to create and tune a signal processing Layout, tuning commands 
(and the resulting replies) are exchanged between the PC and the AWE Core.  The full path that 
these tuning commands travel is shown below in  Figure .

Figure 2. Overview of Design-time Tuning path

To communicate with the embedded AWE Core, AWE Designer (or a 3rd party tuning 
application / script) first connects to a PC application called the Audio Weaver Server [using 
TCP/IP].  The typical scenario is that both AWE Designer and AWE Server are running locally 
on the same computer using “localhost”. Communication occurs using human-readable tuning 
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commands. Scripts containing these commands are called Audio Weaver Scripts (AWS). AWE 
Server then converts each text command into a binary packet and sends them out over the 
specified tuning transport (e.g. Ethernet, USB, RS232, etc.) to the target platform. Scripts 
containing these binary commands are called Audio Weaver Binary (AWB) scripts.

Note: Figure 2 above shows some example AWS commands. The full list of commands and their
arguments is detailed in the Audio Weaver Server Command Syntax document

In the Application software on the target, a Tuning Driver must be developed to handle the 
chosen tuning transport/peripheral. This tuning driver may respond to DMA interrupts from an 
on-chip peripheral, such as UART or SPI, or it may process packets received via USB, network, 
or shared-memory. The Tuning Driver passes the received tuning data to the AWE Core and 
sends replies back to the PC when they are ready. The Tuning Driver is simply a data-handler, 
exchanging messages between the tuning transport and the AWE Core. It may have to run at a 
fairly high priority in order not to miss communication events but the actual command handling 
must be done in a deferred procedure call at a priority lower than the signal processing. Note: this
command protocol is driven by AWE Server. The server issues a command and will not issue 
another command until the original command is complete or times out. There are never 
unsolicited commands or replies.

The API that the Tuning Driver uses to interact with AWE Core is described below in section 3.

Standalone Operation

Once configuration and tuning is complete, a Layout can be saved on the product to allow stand 
alone operation.  To do this, the Layout is exported as an Audio Weaver Binary (.AWB) file.  (In
AWE Designer, select Tools / Generate Target Files).  AWB’s may be stored in-product in two 
ways: either ‘compiled-in’, where the AWB is embedded as static data in the processor’s 
executable, or as a separate data-object stored in NVRAM. 

2.3.2.1. Compiled-in AWB

The simplest way to store and load an AWB is to initialize a C-array with the contents of the 
AWB. The array is then loaded (i.e. executed) immediately after booting, and audio processing 
starts immediately with no external activity. When integrating the AWE Core into an application,
compiling-in the AWB is the recommended first step towards standalone operation. This is 
pictured below in Figure 3.
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Figure 3. Standalone operation from compiled-in AWB.

Audio Weaver Designer will automatically generate this pre-initialized array in a .C file by 
selecting Tools -> Generate Target Files. An example of the resulting, generated source is 
shown below in Figure 4. It shows the AWB data, stored as hex values. Details of the command 
structure can be found below in section 3.4.

Figure 4. InitCommands array generated by AWE Designer
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To load the Layout this AWB file represents, one simply calls the following function during 
post-boot init.

INT32 awe_fwPacketExecuteArray(AWEInstance *pAWE, UINT32 *array, UINT32 arraySize);

2.3.2.2.  NVRAM-stored AWB

The other option for storing generated AWB files is to save them as unique objects elsewhere in 
your embedded system outside the Application executable. For example, they may be stored in a 
local SPI-FLASH, directly controlled by the audio-processor. In this case, code must be added to 
the application to manage data in the FLASH. When reading from FLASH, AWB data may be 
fetched one tuning command at a time and sent to the AWE Core using it’s tuning API.

Figure 5. AWB stored in SPI FLASH

In other systems, FLASH will not be directly managed by the processor hosting the AWE Core. 
In this case, the software “plumbing” for the AWB packets must be developed to accommodate 
the unique architecture of the specific system. What follows are some typical architectures used 
in more complex systems.
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In the example in  Figure 6, a separate micro controller manages the FLASH device.  In this case,
the micro fetches AWB data from the FLASH and passes it along to the DSP via SPI. Here an 
IPC driver must handle the communication between the micro and the DSP.  Tuning packets are 
passed over the IPC as a payload.

Figure 6. External micro controller managing FLASH contents
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Figure 7. Example SOC implementation of Tuning interface

2.4. Control Model

Control data is defined as volume , mute, or other system-state that might affect audio processing
like battery-level.  Likewise, data calculated in the AWE Core (e.g. RMS level, an event-
detection flag, or a direction-of-arrival estimate) may be retrieved using the control interface.

To move control data into and out of the Layout, the Application simply performs direct reads or 
writes of the state-data of module instances. As explained in further detail below, these 
writes/reads work by referencing module instances by their ObjectID. For the Application to 
access a module instance, its ObjectID must be known at application build-time. (At runtime 
ObjectID’s are used to fetch pointers using the function awe_fwGetObjectByID().)  

While the state/data of any module-instance may be directly accessed by the Application, it’s 
highly recommended that the control data be exchanged using Source and Sink modules for the 
Layout / Application interface, as shown below in  Figure 8. 
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Figure 8. Simple example of Control data in a layout.

There are a number of advantages to using Source and Sink modules for your Layout control 
interface (as opposed to directly writing processing modules in the layout):

- Greatly simplified firmware: only a small number of ObjectIDs need to be known at 
build-time.  

- Increased Layout flexibility: if the firmware isn’t hard-coded to write to specific 
processing modules, then Audio Features may be built using any topology. 

- A reusable Control Driver:   If the Control Driver were to be hardcoded to interact with a
specific implementation of an audio feature, it would need modification and testing for
every Layout change. Instead, by using Source and Sink modules, the Control Driver can
simply ‘publish’ control data in the Layout, and the DSP/Audio engineers can use those
values as they see fit. 

- Increased Efficiency: The Control Driver only needs to write the control-data to the 
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Layout once. It can then be distributed and used throughout the Layout via control wires.

Layouts typically use one of two conventions for Source and Sink modules as a Layout control 
interface. The first is to use unique Source/Sink modules for each control signal. The second is to
use a ‘multi-channel’ Source to effectively create a “control bus”.  Greater detail and tradeoffs 
are explained below:

Multi-input Control Convention

For less complex systems, where there isn’t much control I/O, it is convenient to use a separate 
DCSource module for each control input.  Figure 8, above, shows this convention in use to 
provide an interface for a single input (Volume) and single output (RMS). In Figure 9, this 
convention is used to import Volume, Vehicle Speed, and Fan Speed.

Figure 9. Multi-input control convention

An advantage to this convention is that control signals may be easier to work with in the layout. 
Using multiple DCSource modules may also make for a more visually clean Layout. A 
disadvantage is that the firmware becomes slightly more complicated, having to know the 
ObjectID’s for possibly many modules. Another potential disadvantage (again, for systems with 
many control inputs) is that Layout developers, to get access to all of a target’s control signals, 
will need to insert many individual DCSource modules and assign ObjectIDs to match the 
firmware’s expectations.

Control-Bus Convention

The other common way to create a control interface is to have a single, multi-channel Source 
module into which the Control Driver writes multiple control values. The output of this module 
is a multichannel signal which essentially forms a control bus that can be used throughout the 
layout. Router modules are then used to pull off the appropriate control channel. 
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Figure  below shows an example of this convention. In this example, View Wire Info is enabled 
to show the channel count and blocksize; observe that control signals are dashed lines with a 
block-size of one, while audio signals are solid with a blocksize of 32.  (Note: the thickness of 
the wire grows in proportion to the channel count; a 4-ch wire is thicker than a 1-ch wire)

Figure 11. Control-Bus Example

The main advantages of using a control bus is that it makes for simplified and more reusable 
firmware.  In this Control Convention, the Control Driver only needs to know one ObjectID, and 
writes all control data into that module (as an array). To get access to this control data, Layout 
developers simply insert one ‘Layout_Control_Interface’ source-module to get access to all 
control data published by that version of firmware.  The main disadvantages of this approach is 
that one must take time to configure the routers appropriately and it’s less clean, visually.

Signal Conditioning

Often, the raw input from the target control interface will need to be adjusted before it can be 
used in a Layout. For example, a Volume Knob might provide an integer, in the range 0-100 that 
needs to be mapped to some dB value using a table-lookup (to create an appropriate volume 
taper). In products with multiple control inputs, it’s common to add a ‘Control Conditioning’ 
subsystem in which such mathematical or logical operations are performed. This subsystem, 
present in Figure 11 above, is shown, opened, below in 12, where a volume taper is applied.
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Figure 12. Control conditioning subsystem

Controlling Arbitrary Modules

While the AWE Core provides some modules with control pins, most modules do not have such 
inputs. To allow control wires to affect such modules, one should use the ParamSet module. 
This module has a control wire input, and, in the properties panel, can be configured to write the 
internal variable of any module. Likewise, the ParamGet module may be used to extract the 
current data from any module instance’s inner variables. Figure  below shows a ParamSet 
module being used to set the ‘balance’ variable in the ‘Main_Balance’ module. 

Note: One can see the available Variables in module (that may be accessed by 
ParamSet/ParamGet) either by enabling ‘View Module Variables’ under the View menu or by 
clicking the ‘Variables’ tab in the Properties Panel.

Back to Table of Contents  Page: 19 of 51  (v13) 



DSP Concepts, Inc. AWE Core™ Integration Guide

Figure 13. Controling balance using a ParamSet module

2.5. Audio-Processing Model

Block Processing

As audio samples are received, e.g. from an ADC via DMA, they are buffered into blocks. These 
blocks of audio samples are then copied into the Runtime Core, where they are processed, block 
by block. 

A fundamental concept to the Audio-Processing Model is that the signal-processing block size is 
independent of the DMA block size.  For example, an application may be configured for a DMA 
size of 32-samples per block, while a signal-processing Layout in the AWE Core may be tuned 
to operate on blocks of 64, 128, 256, etc.  This decoupling allows the DSP engineer to easily 
make tradeoffs between MIPs, memory, and latency without having to modify or rebuild the 
Application executable. As shown in Figure 10, the AWE core has internal buffering to 
automatically handle this decoupling. In the example in Figure 104, the signal processing layout 
operates on blocks 4x the DMA block-size.
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Figure 10. Diagram of static DMA-blocksize versus ‘tunable’ processing-blocksize. 

To facilitate this design, the Audio Driver (in the ISR for a DMA-complete interrupt) interacts 
with the AWE Core’s audio interface as follows:

1. As audio is received (i.e. as each DMA completes), it’s copied from the DMA-receive 
buffer to the input-buffers of the AWE Core. (This copying operation is facilitated by 
some helper functions, described below in section 4.)

2. Likewise, since input and output are synchronous, newly processed audio is copied from 
the AWE Core’s output buffers to the inactive DMA-transmit buffer. 

3. The Audio Driver tells the AWE Core how much audio was just exchanged by calling the
function awe_fwAudioDMAComplete(uint DMA_size). The return value of this 
function is a set of flags indicating whether the AWE Core has enough audio to process at
the current processing block-size.  (For example, if the DMA size is 32-samples per 
block, and the active layout is set to operate on blocks of 128 samples, then the AWE 
Core would indicate it’s ready to run every 4th DMA-complete.)

4. When the AWE Core reports that enough audio has been accumulated (i.e. that the 
Layout is ready to be processed), the Audio Driver unblocks the Audio Processing thread.
In bare-metal systems, this is done by raising the appropriate user-interrupt; in RTOS 
environments, this is typically done by posting the appropriate semaphore.

5. In the Audio Processing Thread, a call is made to the function awe_fwPump(), which 
processes the layout, refreshing the AWE Core’s output buffers. (These buffers are then 
exported in step 2 above upon the next DMA-complete interrupt) 

Channel Mapping

Just as Layouts and DMAs may use different block sizes, they may also have different channel 
counts. The number of channels supported by a target is fixed, based on the hardware and DMA 
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configuration. Layouts, on the other hand, have a configurable number of input and output 
channels. (A Layout’s input channel-count is configured in the Properties panel of the SYS_in, as
shown in Figure 11. Likewise, a Layout’s output channel count is independently configured in 
the properties of the SYS_out object.)

 Figure 11. Channel-count is in the Layout is independent of the hardware.

Along with the block-size decoupling, this channel independence allows any Layout to run on 
any hardware, e.g. a stereo-processing layout may run perfectly well on a board with 4-in, 8-out. 
To accommodate this, the Audio Driver should implement a simple convention to deal with 
channel mismatches. The most typical implementation is to use whatever audio is available and 
zero-fill the rest:

- If the hardware has more input channels (N) than the current Layout (M), then the Audio 
Driver only copies the first M channels into the AWE Core; the remaining hardware 
channels (N-M) are not processed.

- If the hardware has fewer input channels (N) than the current Layout (M), all N hardware 
inputs are copied into the AWE Core for processing, and the remaining Layout channels 
(M-N) are zero-filled.

- If the hardware has more output channels (N) than the current Layout (M), then all M 
Layout output channels are copied to the transmit DMA buffers; the remaining hardware 
output channels (M-N) are zero-filled.

- If the hardware has fewer output channels (N) than the current Layout (M), only the first 
N Layout output channels are copied to the transmit DMA buffers; the remaining Layout 
output channels (M-N) are not available as hardware outputs.

2.6. Threading / Priority Model

All threading and interrupt issues are managed outside of the AWE Core by the Application.  
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This approach allows Audio Weaver to run in virtually any embedded environment, from 
lightweight targets running bare-metal to more sophisticated systems with an RTOS.

Basic Threading Model

A basic Audio Weaver platform has 4 threads.  From highest priority to lowest priority, the 
threads are arranged as:

 Audio I/O – Blocks of Audio Data are exchanged between DMA-buffers and the AWE 
Core’s input and output buffers. Note: Audio is not processed in this thread; it’s simply 
copied into and out of the AWE Core.

 Tuning I/O – Tuning Data, on a byte, word, or packet boundary is exchanged between 
the Tuning Driver and the AWE core. Note: Tuning data is not processed in this thread; 
it’s simply moved into and out of the AWE Core. 

 Audio Processing – In this thread, the active Layout is processed. This thread is raised / 
unblocked by the Audio I/O thread when sufficient audio data has been received. 

 Background Processing – In the background / main() thread, non-real-time tasks are 
processed. The AWE Core has a single function that must be called from this context: aw
e_fwTick(); This function handles all background tasks in AWE Core, including, 
among other things, the processing of tuning commands.

Advanced Threading Model

The AWE Core allows audio to be processed at multiple block sizes. For example, one path 
through the layout might do time-domain processing on a block size of 32 samples while another
path through the Layout does frequency-domain processing on blocks of 1024 samples.  A 
system like this is built using the BufferUp and BufferDown modules in the layout to connect the
different block size domains as shown in Figure 12.
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Figure 12.  An audio design with multiple block sizes.

The processing of a large block-size path will take longer than the processing of small block-size 
paths. To prevent the longer-running (large block-size) path from consuming all processing 
resources, the AWE Core has a facility to allow different Layout paths to run in different priority 
threads. In the example in  Figure 12, the Application would require two Audio-processing 
threads, each with its own priority.  Generally, for each block-size in the Layout, the Application 
must provide an Audio-Processing thread with unique priority. (Smaller block-size paths require 
higher priority threads.) 

With two block sizes, five total threads are typically used by the AWE Core with the following 
priorities: 

 Audio I/O – Blocks of Audio Data are exchanged between DMA-buffers and the AWE 
Core’s input and output buffers. Note: Audio is not processed in this thread; it’s simply 
moved into and out of the AWE Core.

 Tuning I/O – Tuning Data, on a byte, word, or packet boundary is exchanged between 
the Tuning Driver and AWE core. Note: Tuning data is not processed in this thread; it’s 
simply moved into and out of the AWE Core. 

 Audio Processing – Small Block – In this thread, the Layout path with the small block-
size of 32-samples is processed. This thread is raised / unblocked by the Audio I/O thread
when sufficient audio data has been received. 

 Audio Processing – Large Block – In this thread, the Layout path with the large block-
size of 1024 samples is processed. This thread is raised / unblocked by the Audio I/O 
thread when sufficient audio data has been received. 

 Background Processing – In the background / main() thread, non-real-time tasks are 
processed. The AWE Core has a single function that must be called from this context: aw
e_fwTick(); This function handles all background tasks in AWE Core, including, 
among other things, the processing of tuning commands.

Figure 13 below shows the audio-related threads, with block sizes of 32 and 64. Because the 
processing for a large block-size may take a long time, the processing of path with smaller blocks
is done at a higher priority than threads with larger blocks. 
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Figure 13.  Processor activity when audio processing occurs in multiple threads.

Details of how AWE Core supports paths with different block-sizes is explained in further detail 
below, in section 4.4.5.

3. Tuning Interface

3.1. Overview

The tuning interface uses a single buffer for command and replies. The Application is 
responsible for instantiating this buffer, which is used for bi-directional interfacing between the 
AWE Core and the tuning transport.

3.2. Integration Quick Guide

To bring-up the AWE Core’s Tuning Interface, the integrator should perform the following tasks:

1. In the Application, instantiate a 264-word buffer that the AWE Core can use for in-place 
packet processing, e.g.  UINT32 s_PacketBuffer[MAX_COMMAND_BUFFER_LEN] = {0}; Note 
that this buffer is used to host both the command and the resulting reply.

2. During post-boot initialization, initialize the AWE Core’s tuning subsystem to use this 
buffer, e.g.  awe_fwTuningInit(s_PacketBuffer, MAX_COMMAND_BUFFER_LEN);

3. Develop a driver for the tuning interface. This may mean configuring registers in a SPI or
UART peripheral, or it could mean configuring a USB stack or opening TCP/IP socket. 

4. Create a high-priority “Tuning I/O thread” to handle data from the tuning transport (e.g. 
UART, USB, etc.).  

5. Verify driver, protocol, and hardware functionality by implementing simple ‘echo-back’ 
functionality. In this step, simply copy all received data back to the transmit buffer. 
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6. Modify the “Tuning I/O thread” to send received into the AWE core using whichever 
method is most convenient: awe_fwTuningRxByte(), awe_fwTuningRxWord(), or awe_

fwTuningRxPacket().  Note: tuning commands are not processed in this thread.

7. In the background thread, add repeated calls awe_fwTuningTick() to continually process
data as it arrives. This function will execute commands (once they’re fully received), and 
will return REPLY_READY when a reply packet has been generated.

8. Develop a method to send the reply packet back over the tuning transport. The reply will 
always reside in the tuning buffer allocated in step one. As shown below in section 3.4, 
the length of the reply (in words) is in the upper 16-bits of the 32-bit header. 

3.3. Tuning API

The API is defined in TuningHandler.h.

void awe_fwTuningInit (UINT32 *packet_buf, INT32 buf_length);

 
Initialize the AWE Core to use the specified buffer for communications. This buffer is 
used to hold the current command and is then overwritten with the reply data.

void awe_fwTuningRxByte (unsigned char ch);

 
Send received byte of tuning data into AWE Core. This is typically used for byte-based 
transports like UART.

void awe_fwTuningRxWord (unsigned char ch);

 
Send received 32-bit Word of tuning data into AWE Core. This is typically used for 
word-based transports like SPI.

void awe_fwTuningRxPacket ();

 
Set flag indicating that a new command has been received and is ready for processing 
by the AWE Core. This is typically used for network transports like Ethernet or USB.

UINT32 awe_fwTuningtick (AWEInstance * pAWEInstance);

 
Assemble tuning command, execute it when reception complete, and generate a reply. 
Returns REPLY_READY (0) when a command has been executed and reply is ready to 
be sent.

3.4. Message Structure

Audio Weaver Tuning Commands and Replies use 32-bit words, with a 1 word header and 1 
word CRC wrapping the payload as shown in Figure 14:

16b Length 16b ID
Payload[0]
Payload[1]

…
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Payload[N-1]
CRC Word

Figure 14. Tuning Command and Reply Format

The length of the message includes the header and CRC word.  Thus, the shortest possible 
message – one without a payload – is two words in length.

The CRC word is a 32-bit value and computed so that when all words of the message, including 
the CRC, are XOR'ed together, the result is 0.  The following code computes the CRC of a 
packet prior to transmission:

  nLen = g_PacketBuffer[0] >> 16;

  DWORD crc=0;
  for(i=0; i < (nLen-1); i++)
    {
      crc^=g_PacketBuffer[i];
    }

  g_PacketBuffer[nLen-1] = crc;

Figure 15. Tuning protocol CRC Calculation 

On the target side, the CRC calculations are handled in awe_fwTuningTick().  It checks 
both the CRC of the received message and computes the checksum of the reply. 

3.5. RS-232 Protocol

Audio Weaver messages (commands and replies) are arrays of 32-bit integers.  In the case of RS-
232 communications, we add a lower level byte-by-byte protocol which adds another level of 
robustness to the communication link.  This additional robustness is critical in RS-232 which is 
subject to buffer overruns and dropped bytes.  

Each 32-bit integer s_msg_word within the message array is expanded into 5 bytes using the 
code:

ch = (unsigned char)(0x80 |  s_msg_word        & 0x7F);
ch = (unsigned char)(0x80 | (s_msg_word >>  7) & 0x7F);
ch = (unsigned char)(0x80 | (s_msg_word >> 14) & 0x7F);
ch = (unsigned char)(0x80 | (s_msg_word >> 21) & 0x7F);
ch = (unsigned char)(0x80 | (s_msg_word >> 28) & 0x7F);

7 data bits are taken at a time from each message word and the high bit is set.  (For the last 
character, only the low 4 data bits are used.)

The data is then encapsulated within a series of protocol bytes:
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Start Byte 0x02
Sequence Byte 0x30 to 0x39 (ASCII “0” to “9”)
Message Bytes 0x80 to 0xFF.  5 bytes at a time.
Stop Byte 0x03

With this design, the protocol bytes are unique.  That is, the protocol bytes (0x02, 0x03, 0x30-
0x39) are never found within the data bytes since the data bytes always have the high bit set.  
This makes it easy to identify the start and end of data packets.  The sequence byte starts at 0x30,
increments 1 for each successful transmission, and then wraps from 0x39 to 0x30.  The sequence 
byte is used to identify retransmissions.

For example, consider the command PFID_GetProfileValues with ID = 43.  The message sent 
from the PC to the target processor is:

Message Length = 2 ID = PFID_GetProfileValue
CRC

Which translates into the 32-bit words:

0x0002002b
0x0002002b (CRC is the same for 1 word payloads)

The 32-bit words are expanded into 5 bytes each:

0x0002002b  0xAB 0x80 0x88 0x80 0x80
0x0002002b  0xAB 0x80 0x88 0x80 0x80

Adding the remaining protocol bytes, the sequence sent is:

0x02 (start byte)
0x3X (sequence)
0xAB 0x80 0x88 0x80 0x80 (payload)
0xAB 0x80 0x88 0x80 0x80 (CRC)
0x03

3.6. SPI Protocol

The Audio Weaver SPI protocol mirrors the 32-bit packet structure.  There are two differences:

1. The 32-bit synchronization word 0xDEADBEEF is sent before each message.

2. The 4 bytes within each 32-bit word as swapped.  0x12345678 it turned into 0x78563412.
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For example, consider the command “PFID_GetProfileValues” with ID = 43 (0x2b). The 
message sent from the PC to the target processor is:

Message Length = 2 ID = PFID_GetProfileValue
CRC

This translates into the 32-bit words:

0x0002002b
0x0002002b (CRC is the same for 1 word payloads)

The overall message sent is:

0xDEADBEEF  0xEFBEADDE

0x0002002B  0x2B000200

0x0002002B  0x2B000200

After a message is received by the target processor and the message is being processed, the SPI 
output buffer will be set to the “not ready” word 0xA3A3A3A3.  This will allow a host processor
to poll the SPI interface waiting for the target processor to complete message processing.  The 
target processor will continue to transmit the not ready word until the message has been 
processed.  At this point, it will switch over to the sync word followed by the complete message.

If the host processor continues to read beyond the end of a reply from the target, then the target 
will return 0xFFFFFFFF.
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3.7. USB Protocol

Audio weaver USB communication is based on the USB HID protocol. Audio Weaver 
commands and replies are encapsulated in one or more 56-byte HID report packets operating 
over a 64-byte USB pipe. Each HID report packet starts with the HID report ID. Audio Weaver 
uses HID Report ID 1. If USB HID communications are used for other firmware features, those 
features must use a HID Report ID other than 1.

Following the HID report ID is a one byte seq number and a two byte length field. 

HID Report ID 1 Packet Seq No Command byte length AWE packet bytes

1 byte 1 byte hi byte lo byte upto 52 bytes

3.8. Error Handling

Several different types of errors can occur within the communication link.

Receive Errors (PC/Host  Target Processor)

If the received message has been formatted (such as wrong protocol bytes or the payload is not a 
multiple of 5 bytes in the case of RS-232) then the target processor silently ignores the message.  
The PC/Host will time out and then retransmit the message with the same sequence number.  

If the received message has a CRC error, then the target processor will reply with message type 
PFID_Undefined.  The message payload will be set to E_BADPACKET.  When the PC/Host 
processor receives this reply, it will increment the sequence number and then resend the previous
message.

There are some more error conditions defined.  Take a look at PacketAPI.c.  There are returned 
error codes now for:  failing CRC, unknown message, and message length too long.

Reply Errors (Target Processor  PC/Host)

Assume that the message was properly received by the target processor and executed by the 
message handler in PacketAPI.c.  The reply message is formed and then sent back to the host 
processor.  The sequence number in the reply equals the sequence number of the original 
message from the PC/Host.  

Now, assume that an error occurs in the transmission of the reply back to the PC/Host processor. 
When the PC/Host detects the error, it should resend the original message with the same 
sequence number.  When the message is received by the target processor, the target processor 
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sees that the sequence number is unchanged from the last message; this flags an error in the 
previous reply.  The target processor does not re-execute the last command.  Instead, it simply 
sends the reply again.

Once a message is received through the tuning interface, it is processed by in the function 
awe_fwTick().  The first step is to check the CRC.  If there is a CRC error, the target processor 
returns a 3 word message to the host (PC).  The message type is:

PFID_Undefined

and the message payload is

E_BADPACKET

When this error is received by the host (PC) the last message should be retransmitted.

The Audio Weaver Server application does extensive error handling on the received data.  If an 
error occurs, the Server retransmits the packet 3 times before hard failing.

Time Outs and Resends

The Audio Weaver has several configurable timeouts.  After a message is sent to the target 
processor the Server waits for a reply.  When using the RS232 protocol, if the start of the reply is
not received within 50 msec the Server declares a time out and resends the message 
(SingleCharTimeout).  If the entire reply is not received within 150 msec then a timeout is 
declared (TotalTimeoutTimeout).

When a timeout occurs, the Server resends the message.  If the same message has been sent 3 
times (2 timeouts), then the Server will declare an error and inform the user.

The timeout periods can be modified to match your application.  Edit the AWE_Server.ini file 
and add the lines:

[TimeOut]
SingleCharTimeout=200
TotalTimeoutTimeout=1000

All times are in milliseconds.

4. Audio Interface

4.1. Overview

Audio I/O takes place outside of the AWE Core, in the high-priority Audio I/O Thread.  In this 
thread, audio-samples are buffered up into blocks and then passed into Audio Weaver.  In typical
implementations, audio I/O uses ping-pong buffers and DMA, as shown in Figure 16.  The 
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block-size of the DMA operation is called the fundamentalBlockSize and is typically 32 samples. 
The AWE Core has additional internal buffering which allows processing to run at any multiple 
of the fundamentalBlockSize. 

Figure 16. Block based audio processing using double buffered DMA.

The Application is responsible for all DMA setup and buffering, including configuring the audio 
codec, DMA, and managing interrupts.  This section describes how audio data is exchanged with 
and processed by the AWE Core.

4.2. Audio Processing

The Audio Interface is typically the second thing in a system to be brought up during integration 
(after the Tuning Interface).  To bring-up the AWE Core’s Audio Interface, the integrator should 
perform the following tasks:

1. In the Application, instantiate DMA buffers for input and output. 

2. During post-boot initialization, initialize the AWE Core’s audio subsystem using awe_f
wInit();

3. Develop a driver for the audio interface. This may mean configuring a TDM or I2S 
Serial-Port peripheral, A2B interface, or Shared-Memory IPC system. 

4. Configure ‘chained’ Receive and Transmit DMAs. 

5. Implement a basic high-priority “Audio I/O thread” (the ISR for a DMA-complete 
interrupt in a bare-metal system) with ‘DMA pass-through’ functionality. The goal of this
step is to ensure that the rest of the Audio path (drivers, CODECs, network transceivers, 
amplifiers, etc) is functional by simply copying from the DMA-receive buffer to the 
DMA-transmit buffer. 

6. Create a medium-priority ‘Audio Processing thread’ in which the audio-processing 
function, awe_fwPump() is executed.  In a bare-metal system, this simply means 
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mapping a function to a user-interrupt.  Figure 17 shows how this might be done on a 
SHARC DSP.

…
interruptcb(sig_usr0, RenderAudio);
…

void RenderAudio(INT32 sig_int)
{
    awe_fwPump(0); // Run the layout at user interrupt level
}

Figure 17. Mapping ISR to interrupt on SHARC

7. Plug the AWE Core into the audio path. To do this, modify DMA-passthrough code in 
your high-priority “Audio I/O thread” with code that exchanges audio data with the AWE
Core. At a high-level, this is a 4-step process. This is described in greater detail below in 
section 4.4.

a. Fetch details of the active Layout

b. Copy audio from receive-DMA buffers to AWE Core’s audio-input buffers

c. Copy audio from AWE Core’s audio-output buffers to transmit-DMA buffers

d. Unblock the [lower priority] Audio Processing Thread if the Layout has enough 
data to execute.

4.3. Audio API

This API is defined in Framework.h

void awe_fwInit (AWEInstance * pAWEInstance)

 Audio framework initialization function. 

 

INT32 awe_fwGetInputBlockSize (AWEInstance * pAWEInstance)

 Returns the block size of the currently instantiated Layout. 

 

INT32 awe_fwGetInputSampleRate (AWEInstance * pAWEInstance)

 Returns the sample rate of the currently instantiated Layout. 

 

void awe_fwGetChannelCount (AWEInstance * pAWEInstance, INT32 *inCount, INT32 
*outCount)

 Returns the number of input & output channels in the currently instantiated Layout
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INT32 * awe_fwGetInputChannelPtr (AWEInstance * pAWEInstance, UINT32 pinNdx, 
UINT32 chan, INT32 *stride)

 Returns the address where the next block of input audio samples should be copied.

 

INT32 * awe_fwGetOutputChannelPtr (AWEInstance * pAWEInstance, UINT32 pinNdx, 
INT32 chan, INT32 *stride)

 Returns the address from which processed, output audio samples may be read.

 

INT32 awe_fwPump (AWEInstance * pAWEInstance, UINT32 layout_no)

 Executes the currently instantiated Layout, ‘pumping’ audio from input to output.

 

INT32 awe_fwTick (AWEInstance * pAWEInstance)

 Must be called periodically to allow AWRC to operate its internal state machines.

 

4.4. Detailed Integration Steps

To plug the AWE Core into a functioning audio path (step 7 in section Error: Reference source 
not found above), the following steps must be taken. Note: To aid in understanding, it may be 
helpful to follow along in the AudioDriver.c from one of DSP Concepts’ reference 
integrations.

Update DMA pointers

The Audio I/O thread runs when a new block of audio is available. This thread copies new audio 
samples from the DMA receive-buffer to the Layout; and copies freshly-processed audio from 
Layout to the DMA transmit-buffer. The first step in this process is to update pointers to the 
proper [inactive] DMA buffers. 

Calculate the HW-to-Layout Channel Mapping

To do this, simply compare the number of Hardware channels vs the number of channels in the 
active Layout. The number of hardware channels is known to the integrator; the number of 
channels active in the Layout is fetched using the following method (which populates local 
variables with these counts):

awe_fwGetChannelCount(AWEInstance pAWEInstance, &layoutInChans, &layoutOutChans);

Note: If layoutInChans==0 and layoutOutChans==0, this indicates that the audio system is
not instantiated or that the system does not have any input or output pins.

if(HW_IN_CHAN < layoutInChans)
{
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    chansToWrite = HW_IN_CHAN; 
}
else //HW has enough input to populate all Layout input channels
{
    chansToWrite = layoutInChans;
}

Fill the Layout’s input buffers one channel at a time

To copy audio into the Layout’s input, fetch a pointer to each channel. As the Layout’s input 
buffers are interleaved, we also get a pin stride to use:

//fill available audio from HW
for(chan=0; (chan < chansToWrite) ; chan++)
{
  // If Source DMA buffer is interleaved
  Src_DMA_ptr = DMA_RX_Ptr + chan;

  // If Source DMA buffer is concatenated linear buffers
  //Src_DMA_ptr = DMA_RX_Ptr + AWE_FRAME_SIZE_IN_SAMPLES;

  AWE_In_Ptr = awe_fwGetInputChannelPtr(pAWEInstance, nPinNdx, ch
an, &pinStride );
  for (Sample=0; (nSample < DMA_BLOCK_SIZE); Sample++)
  {
    // Convert from 16-bit PCM data to 32-bit fract32
    *AWE_In_Ptr  = *Src_DMA_ptr << 16;
     AWE_In_Ptr += pinStride;

     // If Source DMA buffer is interleaved
     Src_DMA_ptr += DMA_CHANNEL_COUNT;

     // If Source DMA buffer is concatenated linear buffers
     //Src_DMA_ptr++;
  }
}
//zero remaining extra layout channels
for ( ; chan < (layoutInChans); chan++)
{
  AWE_In_Ptr = awe_fwGetInputChannelPtr(pAWEInstance, nPinNdx, ch
an, &pinStride );
  for(Sample=0; Sample<FW_BLOCK_SIZE; Sample++)
  {
    AWE_In_Ptr[Sample * pinStride] = 0;
  }
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}

Fill the Transmit-DMA buffers one channel at a time

This process is the same as copying input-audio into the AWE Core. First, determine the output 
channel mapping:

if( HW_OUT_CHAN > layoutOutChans )
{
  chansToWrite = layoutOutChans; 
}
else //Layout has more output channels than HW can handle
{   
  chansToWrite = HW_OUT_CHAN;
}

Then, fill the DMA transmit buffer with whatever audio is available:

//fill transmit buffers from available audio
for(chan=0; chan < chansToWrite; chan++)
{
  // If Dest DMA buffer is interleaved
  Dst_DMA_ptr = DMA_TX_Ptr + chan;

  // If Dest DMA buffer is concatenated linear buffers
  //Dst_DMA_ptr = DMA_TX_Ptr + AWE_FRAME_SIZE_IN_SAMPLES;

  AWE_Out_Ptr = awe_fwGetOutputChannelPtr(pAWEInstance, nPinNdx, 
chan, &pinStride);
  for (Sample=0; Sample < DMA_BLOCK_SIZE; Sample++)
  {
     // Convert from fract32 to PCM 16-bit 
     *Dst_DMA_ptr = *AWE_Out_Ptr >> 16;

     // If Destination DMA buffer is interleaved
     Dst_DMA_ptr += DMA_CHANNEL_COUNT;

     // If Destination DMA buffer is concatenated linear buffers

     // Dst_DMA_ptr++;

     AWE_Out_Ptr += pinStride;
  }
}
//zero remaining extra layout channels
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for ( ; chan < (layoutInChans); chan++)
{
  // If Dest DMA buffer is interleaved
  Dst_DMA_ptr = DMA_TX_Ptr + chan;

  // If Dest DMA buffer is concatenated linear buffers
  //Dst_DMA_ptr = DMA_TX_Ptr + AWE_FRAME_SIZE_IN_SAMPLES;

  AWE_Out_Ptr = awe_fwGetOutputChannelPtr(pAWEInstance, nPinNdx, 
chan, &pinStride);
  for(samp=0;samp<FW_BLOCK_SIZE;samp++)
  {
    *Dst_DMA_ptr = 0;

     // If Destination DMA buffer is interleaved
     Dst_DMA_ptr += DMA_CHANNEL_COUNT;

     // If Destination DMA buffer is concatenated linear buffers

     // Dst_DMA_ptr++;
  }
}

Tell the AWE Core how many samples were added / consumed

After handling the audio exchange between the DMA buffers and the AWE Core, we inform the 
AWE core how many samples were exchanged using the following function:

unsigned int awe_fwAudioDMAComplete(AWEInstance pAWEInstance, int sampsPerTick);

The return value from this function indicates if any paths through the layout are now ready to 
run. (For an explanation of this, see section 2.5.1, Block Processing and Section 2.6.2 Advanced 
Threading Model)

Unblock the Audio Processing Thread(s) when appropriate

The return value from awe_fwAudioDMAComplete is a bit-field indicating when Layout paths 
are ready to run. Bit 0 being set true means the smallest block-size (that of the input and output 
pins) is ready to be processed.  Bit 1 means the next larger block-size is ready to be processed, 
etc. 

In a bare-metal system, where thread priorities are managed using user-interrupts, this step is 
done by raising the appropriate interrupt as follows:

LayoutMask = awe_fwAudioDMAComplete(pAWEInstance, FW_BLOCK_SIZE);

Back to Table of Contents  Page: 37 of 51  (v13) 



DSP Concepts, Inc. AWE Core™ Integration Guide

if (layoutMask & 0x01) //hi prio (small block) path ready
{
  raise(SIG_USR0);
}
if (layoutMask & 0x02) //lo prio (large block) path ready
{
  raise(SIG_USR1);
}

5. Control Interface

5.1. Overview

This section describes how to control the audio processing in the final product without being 
connected to a PC.  Typical use cases are adjusting volume, bass, or treble based on some 
hardware event (like a volume knob) or perhaps dynamically changing filter coefficients based 
on changing environmental listening conditions.

A simple example of this is shown below in Figure 18.

Figure 18. Simple system showing Source and Sink models as Layout Control I/O interfaces.

The API for the control interface is simple; firmware may directly read or write the state-data of 
any module instance. Because layouts are dynamically instantiated, the Control Driver must get 
the address of a module’s state-data using the Control API’s only function, 
awe_fwGetObjectByID().  Once it has this pointer, the application can directly read and write 
data.
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1.1. ObjectID allocation

Every module in a Layout has an ObjectID. By default, ObjectIDs are dynamically assigned by 
the AWE Core during run-time instantiation.  However, for modules that the integrator wishes to 
access, a static ObjectID may be assigned to a module instance.  To assign a static ObjectID in 
the Layout, select a module, open the Properties panel, select the Build tab, and set the ObjectID,
as shown in Figure 19. (When the ObjectID field is left blank, it will be dynamically assigned by 
the AWE Core.)

Figure 19. Assign a static ObjectID to a control interface module.

The AWE Core reserves ObjectID’s 0-29999. Statically assigned ObjectIDs must start at 30000.

5.2. Control API

INT32 awe_fwGetObjectByID(AWEInstance *            pAWEInstance,
                                                   UINT32                       ID
                                                   InstanceDescriptor **  pObject,
                                                   UINT32 *                    pClassID);

Locate the object based on its objectID. 

Parameters

[ in]  pAWEInstance          AWE Instance pointer

[in] ID ObjectID to locate 
[out] pObject Pointer to object reference to be 

updated with address of module
[out] pClassID Pointer to object reference to be 

updated with class ID of object 
Returns

E_SUCCESS or E_NO_MORE_OBJECTS 
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5.3. Detailed Integration Steps

Choose a control convention

As described above, in section 2.4, most integrators choose either the multi-input or control-bus 
convention.

Add Interface modules to the Layout

The source and sink modules in Figure 20 below can be used to create a Layout Control 
Interface. 

On the input side, there are essentially two classes of modules to choose from, Source and 
DCSource modules.  A Source module can hold multiple unique inputs, making that data 
available to the layout as a multichannel control-bus. To the firmware, Source modules look like 
an array, with each entry corresponding to an output channel in the layout. A DC Source module 
can only hold one value. To the firmware, DC Source modules look like a single int or floa
t.

On the output side, one may use either a Sink module or a Triggered Sink module. Both of these 
modules can be multichannel and inherit the channel-count based from the properties of the input
wire. The Sink module’s value is updated each time the Layout is processed, while the Triggered
Sink module is updated whenever the input control wire has a non-zero value.

     

Figure 20. Source and Sink Modules
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Assign Static ObjectID’s to interface modules

As shown above in  Figure 19, each module that will be accessed by the Control Driver is 
manually assigned a static ObjectID (in the Build tab of the Properties panel) by the AWE model
author. The target BSP has pre-assigned ObjectIDs to specific controls.This assignment must be 
documented so that the AWE model author will know what ObjectID  to assign for the desired 
control. 

On the application side the ObjectID for each control is hard-coded in a table in the Control 
Driver. These ObjectIDs must be greater than 30000 and less than 40000. The ObjectID to be 
assigned to the control object in the Properties panel must match the ObjectID statically assigned
to the control in the Control Driver.

Update your Application to interact with the interface modules

Somewhere in your application, code must be added to fetch pointers to the Layout Control 
Interface modules and write data in. Control data may then either be updated on a periodic basis 
in the background thread, or alternatively be updated only when changes occur, e.g. in response 
to an IPC message from a host processor. 

The exchange of control data with the Source and/or Sink modules occurs either in the command 
processing loop or in a thread running at a lower priority than the real time processing thread. 
The rational for this is that communication with control peripherals is typically much too slow to 
run in the real time loop. This becomes obvious when multibyte communication is required as is 
typical with messaging over I2C or CAN. When data is exchanged between the peripheral and 
the module the real time processing must be momentatily locked out to maintain the data 
consistency. This is typically done using semaphores or disable/reenable interrupts. 

The Control driver consists of the following three methods:

void ControlInit(void);
void InitializeControlPeripheral(UINT32 nControlID);
void ProcessControlIO(void);

ControlInit discovers what controls the running model is interacting with and creates a table of 
pointers to those modules along with any peripheral information associated with that control.

ControlInit calls InitializeControlPeripheral to perform any setup need to access that peripheral.

ProcessessControlIO is the method called from the command processing loop to do the actual 
interaction with the control when the model is running.

    // Find any source control modules instantiated in the model
    for (n = 0; n < CTRL_NUM_INPUTS; n++)
    {
        // Does the current AWE model have a source module with this control object ID?
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        if (awe_fwGetObjectByID(&g_AWEInstance, 
                                InputCtrlID[n], &pInstance, &classID) != OBJECT_FOUND)
        {
            // No such object.
            continue;
        }

        
        // Check that module assigned this object ID is of module class DC Source
        if (classID != CLASSID_DCSOURCEV2)
        {
            continue;
        }

        
        // Save the module instance in the control info structure
        g_InputControl[g_nInputControlCount].pModule = (ModClassModule *)pInstance;

        
        // Save the I/O pin number in the control info structure
        g_InputControl[g_nInputControlCount].nPinNo = InputCtrlPinNo[n];

        
        g_nInputControlCount++;

        
        InitializeControlPeripheral(InputCtrlID[n]);
    }

    g_nOutputControlCount = 0;

    // Find any sink control modules instantiated in the model
    for (n = 0; n < CTRL_NUM_OUTPUTS; n++)
    {
       // Does the current AWE model have a sink module with this control object ID?
        if (awe_fwGetObjectByID(&g_AWEInstance, 
                                OutputCtrlID[n], &pInstance, &classID) != OBJECT_FOUND)
        {
            // No such object.
            continue;
        }

        
        // Check that module assigned this object ID is of module class Sink
        if (classID != CLASSID_SINK)
        {
            continue;
        }      

        
        // Save the module instance in the control info structure
        g_OutputControl[g_nOutputControlCount].pModule = (ModClassModule *)pInstance;

        
        // Save the I/O pin number in the control info structure
        g_OutputControl[g_nOutputControlCount].nPinNo = OutputCtrlPinNo[n];

        
        g_nOutputControlCount++;
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        InitializeControlPeripheral(OutputCtrlID[n]);        
    }  
/**
 * @brief  Perform control I/O
 */
void ProcessControlIO(void)
{
    UINT32 nPinValue;
    UINT16 n;

    
    // Process any source control modules   
    for (n = 0; n < g_nInputControlCount; n++)
    {
        // Get the AWE module instance for this source control
        awe_modDCSourceV2Instance * pModule = 
                                   (awe_modDCSourceV2Instance *)g_InputControl[n].pModule;

        
        // Which GPIO pin is this control attached to
        UINT32 nPinNo = g_InputControl[n].nPinNo;

        
        // Get the current state of the control
        awe_pltGPIOGetPin(nPinNo, &nPinValue);

        
        // Update the AWE module state
        pModule->value = (FLOAT32)nPinValue;
    }

       
    // Process any sink control modules   
    for (n = 0; n < g_nOutputControlCount; n++)
    {
        // Get the AWE module instance for this sink control
        awe_modSinkInstance * pModule = (awe_modSinkInstance *)g_OutputControl[n].pModule;

        
        // Which GPIO pin is this control attached to
        UINT32 nPinNo = g_OutputControl[n].nPinNo;

        
        // Set to 1 if greater than 0 otherwise set to 0
        nPinValue = (UINT32)(*(pModule->value) ) > 0 ? 1 : 0;

        
        // Change the ouput state of this control
        awe_pltGPIOSetPin(nPinNo, nPinValue);
    }    

      
} // End ProcessControlIO

Figure 21. Example code that writes control data into the Layout
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6. Global Variables and Data Structures
An application that integrates the AWE Core must define a number of global variables and data 
structures.  

6.1. Memory Heaps

The AWE Core has its own memory manager that dynamically allocates memory for audio 
processing modules and wires. There are 3 different memory heaps that modules will request in 
their constructors, two internal and one external. This allows zero-overhead, dual-data fetches on 
some architectures, with coefficients being stored in one internal heap and samples being stored 
in the other. 

Modules typically specify a priority of memory heaps.  For example, allocate from the internal 
DM heap.  If it is full, allocate from the internal PM heap.  If it is full, allocate from external 
memory.  This overflow behavior lends itself to processors that only have two different memory 
types (e.g., internal and external) or to cache based architectures where no distinction is made 
between memory types.

AWE_FW_SLOW_ANY_CONST UINT g_master_heap_size = MASTER_HEAP_SIZE;
AWE_FW_SLOW_ANY_CONST UINT g_slow_heap_size = SLOW_HEAP_SIZE;
AWE_FW_SLOW_ANY_CONST UINT g_fastb_heap_size = FASTB_HEAP_SIZE;

section("awe_heap_fast")
UINT g_master_heap[MASTER_HEAP_SIZE];

#pragma section("awe_heap_slow",NO_INIT)
UINT g_slow_heap[SLOW_HEAP_SIZE];

section("awe_heap_fastb")
UINT g_fastb_heap[FASTB_HEAP_SIZE];

6.2. Module Table

The module table specifies which modules in the AWE Core library the linker will include 
during building, thus making them available in the executable for dynamic allocation.  The 
module table is an array of pointers to module class objects.

AWE_FW_SLOW_ANY_DATA
const ModClassModule *g_module_descriptor_table[] =
{
    LISTOFCLASSOBJECTS
};

AWE_FW_SLOW_ANY_DATA
UINT g_module_descriptor_table_size = 
sizeof(g_module_descriptor_table) / 
sizeof(g_module_descriptor_table[0]);
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Figure 22. Module Table

This macro, LISTOFCLASSOBJECTS, is defined in ModuleList.h as shown in  Figure 23.

#define LISTOFCLASSOBJECTS \
&awe_modAGCAutoAttackReleaseClass, \
&awe_modAGCCoreClass, \
&awe_modAGCCoreARClass, \
&awe_modAGCGainComputerClass, \
&awe_modAGCLimiterCoreClass, \
...

Figure 23. List of Module Classes 

6.3. Optimizing Memory Usage

By default the AWE Core enables all modules available on a given processor. This means that 
memory will be used to allow instantiation of modules that will never be used. Should you need 
to optimize memory usage, the simple way to do so is to modify the LISTOFCLASSOBJECTS 
macro in TargetInfo.h.

To make modules unavailable in your executable, simply remove them from this Macro. At build
time, with Linker-elimination enabled, they will not be built into the executable. Note: The list of
modules used in a given layout can be seen in AWE Designer by selecting the Layout / Layout 
Properties, as shown in Figure 24.
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Figure 24. Module Classes used in a layout

6.4. Target Info

The application maintains a master include file named “TargetInfo.h” that defines the capabilities
of the target system. This file contains firmware version information, device capabilities, heap 
sizes and which AWE modules are supported.  When the Server connects, it reads this data 
structure and displays the information in the output window.

/* ----------------------------------------------------------------------
** Target Definition
** ------------------------------------------------------------------- */

// Version Information
#define VER_DAY 02
#define VER_MONTH 4
#define VER_YEAR 17

#define CORE_ID 0
#define CORE_SPEED 168e6f
#define SAMPLE_SPEED 168e6f
#define HAS_FLOAT_SUPPORT 1
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#define HAS_FLASH_FILESYSTEM 1
#define NO_HW_INPUT_PINS 1
#define NO_HW_OUTPUT_PINS 1
#define IS_SMP 0
#define NO_THREADS_SUPPORTED 2
#define FIXED_SAMPLE_RATE 48000.0f
#define IS_COMPLEX 0
#define SAMPLE_SIZE_IN_BYTES 4

/* ----------------------------------------------------------------------
** Specifies the sizes of each of the heaps on the target
** ------------------------------------------------------------------- */
#define MASTER_HEAP_SIZE (1024*18)
#define SLOW_HEAP_SIZE (1024*16) 
#define FASTB_HEAP_SIZE (1024*32)

#define MAX_COMMAND_BUFFER_LEN 272

 
// Audio Weaver modules
extern const ModClassModule awe_modAGCCoreClass;
extern const ModClassModule awe_modAGCLimiterCoreClass;

6.5. Communication Buffer

The communication buffer is an array of 32-bit unsigned integers.  The Platform essentially owns
the communication buffer.  The Platform allocates the buffer, receives messages over the tuning 
interface, calls the Framework communication handler to process the message, and then returns 
the resulting message back to the PC or host.

AWE_FW_SLOW_ANY_DATA DWORD s_PacketBuffer[MAX_COMMAND_BUFFER_LEN];

6.6. Memory Sections

The Audio Weaver module libraries and Framework code utilize a large number of memory 
sections.  The memory sections are defined using macros in Framework.h and appear within the 
Linker Definition File (LDF).  The sections related to code placement:

Macro Section Name Description

AWE_MOD_SLOW_CODE awe_mod_slowcode Non time-critical code used by the audio modules.

AWE_MOD_FAST_CODE awe_mod_fastcode Time-critical code used by the audio modules. 

AWE_FW_SLOW_CODE awe_fw_slowcode Non time-critical Framework code. 

AWE_FW_FAST_CODE awe_fw_fastcode Time-critical Framework code.  

There are 24 memory sections related to data placement.  The naming convention used by the 
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macros is:

AWE_{MOD/FW}_{SLOW/FAST}_{PM/DM/ANY}_{DATA/CONST}

There are 2 x 2 x 3 x 3 = 24 different permutations and each subfield has a specific meaning:

MOD/FW – specifies whether the section applies to modules (MOD) or to the 
Framework (FW).

SLOW/FAST – specifies the time criticality of the memory section.  SLOW memory is 
referenced infrequently or from non-real-time code.  It is suitable to be placed in 
external memory with little loss of performance.  FAST memory is time-critical 
and should be placed internally.  If internal placement of a FAST section is not 
possible, then there will be a performance penalty.

PM/DM/ANY – specifies internal memory placement on the SHARC.  PM and DM refer 
to two distinct internal memory blocks and enable parallel memory accesses.  
Traditionally, these are called "PM" and "DM" spaces on the SHARC.  More 
recent processors with more than 2 internal memory blocks require placement in 
distinct blocks.  ANY indicates that placement in PM or DM is unimportant; the 
section can go anywhere.

DATA/CONST – DATA sections must be placed in RAM and hold variables that are 
being updated.  CONST sections store initialized constant data and are suitable for
inclusion into ROM.

The corresponding section names (which must appear within the LDF) are lower case.  For 
example, AWE_MOD_SLOW_DM_DATA is placed in the section awe_mod_slowdmdata.

7. Framework Prerequisites
We are often asked about integrating the Audio Weaver Core into an existing real-time 
framework.  This section lists the features and capabilities required of a framework to support 
Audio Weaver.  You can think of this information as a summary of the requirements and APIs 
previously listed.

7.1. Basic Processor and Board Initialization

1. Processor can boot from NVRAM

2. PLL and all clocking subsystems initialized

3. Memory and Cache's configuredAudio Subsystem working

4. Audio drivers implemented (TMD/I2s serial ports configured with proper clock 
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polarities, etc)  

5. DMA channels configured, with ping-pong buffers for DMA RX and TX

6. If there are multiple audio peripherals, all serial ports and DMA should be started 
synchronously

7. Audio devices (CODECs, ADCs, DACs, network interfaces) configured and verified to 
be passing clean audio

8. Proper sample rates, clock polarities, etc 

9. CODEC gains, filters, and mixers have to be properly configured

10. Communications subsystem working

11. Communication drivers (SPI, USB, RS232, TCP/IP, etc) configured and verified to be 
exchanging clean communications data with Windows PC.

12. Proper baud rates, clock polarities, etc

7.2. Simple “Audio Passthru” Application

To ensure we're integrating the AWE Core into a known-good environment, it's required that a 
simple "Audio Passthru" application be functional.  This "hello world" application should simply
pass audio from input to output, demonstrating that the PCB, audio peripherals, components, and
baseline configuration are all functional and stable.

1. CODEC (etc) configured properly

2. I2S/TDM serial port I/O is serviced by double buffered ("ping-pong"), block based DMA.
(The DMA needs to run in the background without needing processor intervention.)

3. The DMA must generate an interrupt at the end of each block transfer.  (Polling for the 
completion of a block transfer in the background/main loop won't work. The main loop is
reserved for non-real-time critical operations.)

4. In the DMA Interrupt handler, ping-pong buffers are toggled, and audio is simply copied 
from RX to TX buffer

At this point, the audio I/O APIs described in Section 4 can be called from the DMA interrupt 
handler.

7.3. Simple “Echo-Back” Application

Tuning commands (and replies) are exchanged in realtime between Audio Weaver Designer on 

Back to Table of Contents  Page: 49 of 51  (v13) 



DSP Concepts, Inc. AWE Core™ Integration Guide

the PC and the AWE Core library on the embedded target. This communication can happen over 
a number of different protocols, listed below in order of throughput (higher bandwidth interfaces 
provide a better user experience).

1. Ethernet - standard TCPI/P interface.

2. USB - HID device

3. SPI - custom 32-bit protocol

4. UART - custom byte-based protocol

Similar to the requirements for the Audio subsystem, the example application should also include
'Echo-back' functionality on the chosen communications device. Here, each byte/word/packet 
received should be immediately transmitted back to the PC, demonstrating that the PCB, comms 
peripherals and components and baseline-configuration are all functional and stable.

 Comm peripheral is enabled and interrupts are triggered on a byte/word/packet boundary 
(depending on protocol)

 In the Comm Interrupt handler, RX data should be copied to the TX buffer to be sent 
back to PC.

 Real-time Audio and Communications I/O must be able to happen at the same time.  

 The tuning interface should be low latency. Ideally, we like a round trip message time of 
< 5 msec. (This latency is a soft requirement and mainly affects user-experience; Audio 
Weaver Designer uses this channel to facilitate module "inspectors", and some, such as 
meters, tuning knobs and sliders, etc., may be less than smooth if there's a 
communications bottle-neck.)

7.4. Basic Interrupts and Threading Configured

Systems with the AWE Core integrated typically have code that executes at four different 
priorities. (For more details see Section 2.6 of this document.) These tasks may be run as actual 
threads in an RTOS, or simply interrupt-handlers in a bare metal implementation. From highest 
to lowest priority, these threads are typically as follows: 

Highest Communication I/O - Tuning data is simply moved between the RX/TX 
buffers and the AWE Core's message-queue (where it's processed at a lower 
priority).

Audio I/O - Audio samples, in blocks of 32 e.g., are moved between the 
DMA RX/TX buffers and the AWE Core's input/output pins.
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Audio Processing - In this thread the Audio Weaver signal processing 
Layout is executed.

Lowest Background - In this thread, non-realtime tasks are handled. Audio Weaver 
Tuning commands are executed and the general machinery of the AWE 
Core is maintained.

7.5. Optional: Flash memory

To integrate the Embedded File Manager, we need to have the following functions implemented:

 Flash Read

 Flash Write

 Flash Erase
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